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SUMMARY 

Second-order rigid flapping response statistics of lifting rotor blades are obtained by a spatial correlation 
method for a general linear PDE with random forcing previously formulated by the author. These statistics 
enable us to analyze the effect of a finite correlation length of a spanwise nonuniform random excitation on 
the flapping blade response. For a random vertical inflow typical of turbulence excitation and for an advance 
ratio small compared to unity, this effect can be concisely expressed in terms of an amplitude factor and a 
phase factor. In the case of a spanwise correlation length of the order of the blade length, the amplitude 
factor shows that there may be as much as a 40% error in a solution which assumes the inflow is spatially 
uniform. The analytical development for a multi-mode solution illustrates how the spatial correlation method 
may be used in conjunction with a Galerkin procedure. 

1. Introduction 

The dynamics of flexible lifting rotor blades in forward flight (Fig. 1) is complicated by the fact 

that the aerodynamic lift acting on the blade changes significantly in the course of each blade 

revolution. Even an analysis of the small-amplitude motion of such a structure must cope 

with problems such as parametric excitation associated with the periodically time-varying system 

parameters which characterize the aerodynamic damping and spring-force effects. In one model 

for the forced small transverse vibration of a single blade, the dimensionless transverse displace- 

ment w(x,r) (normalized by the blade length l) is governed by the dimensionless partial dif- 

ferential equation [1, 2, 9] 

wrr +70 Ix +llsinrlw r +Lxr[W ] =f(x,r) ( 0 < x  < 1 , r  > 0) (1) 

with 

Lxr[ ]=~4[ ]xxxx -  ½(1-  x 2)[  ]xx +(X + 7ogCOsrlx +psinrl)[ ]x (2) 

where 7 = 670 is theLock number characterizing the aerodynamic effect, t2 is the advance ratio 
(the ratio of the forward speed of the vehicle, Vf, to the rotating speed at the blade tip, YZl), 

* The research was supported in part by the Army Materials and Mechanics Research Center of Watertown, 
Mass., U.S.A. (Contract No. DAAG46-73-C-0227) and in part by the National Science and Engineering Re- 
search Council of Canada under Operating Grant No. A9259. 
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Schematic diagram of a rotor blade. 

x is the distance from the axis of rotation along the blade span normalized by the blade length, 
and r/~2 is the real time. The effective bending stiffness factor of the blade, ~ ,  is related to the 
bending stiffness of the uniform blade, El, by the relation ~-4 = EI]m14~22, where m is the blade 
mass per unit blade length. When the source of external excitation is a vertical inflow, we have 

f (x , r )  = %1 x + gsinrL 3`(x,r) where 3, is the so-called inflow ratio. The temporally periodic 
coefficients in the PDE (1) give rise to the possibility of parametric excitation and dynamic 
instability (see [1] and references therein). 

Aside from the various stability analyses, there is also the problem of the effect of random air 

and rotor generated turbulence on the structural integrity of the blade. In an effort to under- 
stand this aspect of the rotor blade problem, several papers in the literature analyze the stochastic 
blade response to a (zero mean) random inflow with known statistics (see [2] and references 
given therein). Because of the time-varying coefficients in (1), the steady-state response 
process w(x,r)  will be temporally nonstationary even if 3`(x,r) is stationary. In spite of the 
substantial reduction (by at least an order of magnitude) in machine computation made possible 
by a new method of solution developed in [3] and used in [2], it is still rather expensive to 
generate useful information on the stochastic properties of the nonstationary steady-state re- 
sponse of the flexible blade for design purpose. 

For a blade hinged at the axis of rotation and free at the other end, we have 

w(O,r) = Wxx(O,r ) = Wxx(1,r ) = Wxxx(1 ,T) = O. (3) 
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Lifting rotor blades 243 

If the inflow is uniform along the blade span so that X(X,T) is independent of x, one may expect 

that the dominant motion of such a blade is in the form of rigid flapping. A solution of the sto- 

chastic forced transverse vibration problem for a spanwise uniform loading based on a rigid 
flapping blade model is considerably simpler than a more general flexible blade analysis as far as 
the amount of required machine computation is concerned (see [4] and [5]). Inasmuch as the 
stochastic loadings experienced by rotor blades are often random functions of both space and 
time, a rigid flapping solution for (zero mean) spanwise correlated random loads of comparable 

simplicity should be of interest (as pointed out in [4]). The rigid flapping mode of blade defor- 
mation is the lowest among the normal modes of a steadily rotating beam, i.e., for the linear 
operator (2) with g = 0 and the boundary conditions (3). Such a solution and the string solution 
(~-4 = 0) of [2] delimit the range of the solution for any flexible blade with finite bending 
stiffness. With the help of the spatial correlation method of [3], we can now formulate an 
efficient computational procedure to obtain the rigid flapping mode solution for a spanwise 
correlated random excitation containing as a special case the solution of [4] and [5] for spanwise 
uniform inflows. The results obtained show that ignoring a finite spanwise load correlation 
length may have an unexpectedly significant effect on the second-order response statistics of 
the blade, even for the rigid flapping mode. At the same time, the analytical development 
leading to these results illustrates how the general spatial correlation method may be used in 
conjunction with a Galerkin procedure. 

For the purpose of illustrating our method of solution, we take X(x,r) to be of zero mean 
and exponentially correlated in time with an autocorrelation function 

< X(x2, r2) )t(xl, r l )  > = e -atr= -ra IRs(x: , x l )  (4) 

where < ... > is the ensemble-averaging operation, a is a known positive constant and R S ( x 2 ,  x I ) = 

Rs(xl ,  x:)  is a given function. Rs(Xl, x2) was taken to be a positive constant o 2 for the case 

of a random inflow due to high-altitude air turbulence in [4]. Since equation (1) is linear (so 
are the associated initial and boundary conditions), w(x, 0 is also of zero mean and we can 

therefore concentrate on the second-order response statistics of w(x,r)characterized by the 

autocorrelation function R(x2, r2; x l ,  r l )  = < W(X2, T2) W(Xl, T1)>.  To determine 
R(x2, r 2 ; x l ,  r l ) ,  we will follow the procedure of [2, 3] and consider ;~(x,r) to be the steady- 

state stationary response to a temporally uncorrelated random excitation n(x, 0 of a dynamical 
system characterized by the first order ODE 

+ = 2x/ -n(x,T) (5) 

where < n(x2, rE) n(xl, rl) > = Rs(x2, x l )  6(r2-r1) .  It is not difficult to verify that the 
autocorrelation function of  the steady-state solution of (5) is as given by the right-hand side of 
(4) (see [2]). Furthermore, it can be shown [2] that 

< n(v,r') w(x,O > = < n(y,r') Wr(X,r ) :> = 0 (6) 

for all r '  ~> r > 0 and 0 ~< x, y ~< 1. The numerical results to be given in this paper will be for 
the special case Rs(x,y ) = o 2 exp(-elx-y I ) where o 2 > 0 and e ~> 0 are given constants. 
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The analytical and numerical results for the rigid flapping solution obtained with the help 

of  the above device allow us to study the effect of a finite load-correlation length characterized 

by the dimensionless number e (with the correlation length equal to I/c) on the second-order 
statistics of the (zero mean) rigid flapping blade response. In the low advance ratio range, 

/13 < <  1, a perturbation solution shows that the effect of the correlation length may be 

completely described by an amplitude factor p and a phase factor 4, both factors are simple 
functions of  e. In the case of  a random vertical inflow with a correlation length of the order of 

the blade length (e = O(1)), we see from the expression for p(e) that the discrepancy between 

our solution and one ignoring the finite spatial load-correlation (as in [4] and [5]) may be as 

much as 40% of the former. In the high advance ratio range, an efficient numerical solution 

procedure is formulated for the second-order statistics of the periodic steady-state flapping 

blade response. The numerical solution obtained by this efficient procedure shows that the 

effect of a finite load-correlation length (0 < e < oo) is qualitatively similar to that described by 

the amplitude and phase factor for the low advance ratio case. 

2. Spatial correlation functions for flexible blade response 

The essential feature of the spatial correlation method for the second-order response statistics 

proposed in [3] and used in [2] and [6] is the formulation of a nonstochastic mixed initial- 

boundary value problem for the four unknown spatial correlation functions of the response 

proces w(x,r): 

u(x,y,~) = < w(x,r) w0,,r) >, 
t(x,y,z) = < wr(x,7-) w0,,r) >, 

s(x,y,r) = < w(x,r) w~(v,r) >, 
v(x,y,r) = < w.(x,r) w.ty, r) >, 

(7) 

for all 0 ~< x, y ~< 1 and r i> 0. Note that these spatial correlation functions contain the mean- 

square response properties as special cases (when y = x). As we shall see, they also serve as the 

initial conditions for a nonstochastic mixed initial boundary value problem for the determination 

of the autocorrelation function R(x2, r 2 ;x l ,  r l ) ,  (Section 7). 
To obtain an appropriate set of  equations for u, s, t and v, we observe that 

and 

ur = < wr(x,r) w(y, r) > + < w(x,r) wr (y,r) > = t + s (8) 

t~ = v(x,y,r) + < w~dx,~) w(v,~) > (9) 

where we have made use of  the fact that, within the framework of meansquare convergence, 

differentiation commutes with the ensemble-averaging operation. We now use equation (1) to 

eliminate wrr from (9) so that 

t~ = v - L x~[u] - 7olx  + btsinrJ t + p(x,y, r) (10) 

where 

j0(x,y,r) = 7o Ix +/asinrl < )~(x,r) w(y,r) > (I 1) 

=- 70 Ix + tlsinrl p(x,y,r). 
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Interchange the role ofx  andy and we have also 

Sr = v - Lyr[U] - 70 l y +/2sinrL s +p(v,x,r). (12) 

Finally, similar manipulations applied to the expression for vr give 

Vr = - Lxr[S] - Lyr[t] - ~/o( Ix +/asinr [ + Ly +/asinr [ ) v + 0(x,y,r) (13) 

where 

O(x,y,r) = ~'o Ix + t~sinr[ q(x,y,r)  + 70 ly +/~sinr [ q(y,x,r) (14) 

with q(x,y,r)  = < X(x,r) wr(v,~" ) >. 
Equations (8), (10), (12) and (13) are to be satisfied in the interior of the semi-infinite unit 

square column (0 < x, y < 1, r > 0) in the x, y, r-space. On the base square of the column, 
r = 0, we have from the condition of no initial transverse motion: 

W(x,y,O)=O, l+'=~[t Sv] (0 ~<x,y ~< 1). (15) 

Fhe appropriate boundary conditions on the four walls of the column are obtained from (3) 
and (7): 

w(oy, r) = wxx(O,y,r)= Wxx(1,y,r)= w~Al ,y , r )= o, 

14](x,O,r) = lYyy(x,O,r)= [¥yy(x,l ,r) = Wyyy(X, l ,r)= 0, 

(0~<y~< 1 , r >  0), 

(0~<x~< 1 , r > 0 ) .  
(16) 

The four equations (8), (10), (12) and (13) contain six unknowns since p(x,y, r) and q(x,y,r) 
involve the unknown w. We need two more equations to complete the system. To get these, we 
observe that 

and 

Pr(x,y,r) = < Xr(X,r ) w(y,r) > + < X(x,r) wr(y,r ) > 

= - c~p(x,y,r) + q(x,y,r) 

qr(x,y,r)  = < Xr(x,r ) wr(y,r ) > + < X(x,z) WrrQV, r ) > 

(17) 

= - (c~ + 70 ly + psinrl ) q(x,y,z)  - Lyr[P(x,y,z)] 

+ 70 ly +/asinr I Rs(x ,y  ) (18) 

where we have made use of the PDE (1) to eliminate Wrr, the ODE (5) to eliminate Lr, and the 
conditions (6) to simplify the resulting equations. The initial conditions 

p(x,y ,O)=q(x,y ,O)= O, (O<~x,y <~ I) (19) 
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supplementing (17) and (18) follow from the fact that the blade experiences no transverse (out 
of the rotor plane) motion up to some reference time r = 0. The boundary conditions for p and 
q follow from (3) and the definition ofp  and q: 

p(x,O,r) = pyy(x,O,r) = pyy(X, 1,r) = pyyy(X, 1 ,r) = 0, (0 ~<x ~< 1, r > 0). (20) 

We can first solve (17-20) for p and q in the y,r-space with x as a parameter, and then use the 
result in (8), (10), (12) and (13) for the determination of the other four unknowns. We note 
also that the spatial correlation of the loading, characterized by Rs(x ,y  ), enters into the anal- 
ysis explicitly only through its appearance on the right side of (18). 

3. The rigid flapping motion 

We now introduce the rigid flapping assumption by taking w(x,r)  = x ~ r ) ,  so that 

u(x,y,r) = xyU(r) ,  s(x,y,r)  = xyS(r) ,  
(21) 

t(x,y, r) = xy  r ( r ) ,  v(x,y, r) = x y  V(r), 

where U(r) = < ~2(r) >,  etc., and equations (8), (10), (12) and (13) become four ODE: 

(_1 = T + S ,  

= V -  [ao 2 + k (r ) ]  U -  c(r) T + P(r), 
(22) 

= v -  [co = + ~(r)]  u - c(r) s + P(r),  

f" = - [oo 5 + k(r)]  (S + 73 - 2c(r)  V + 2Q(r) ,  

where (') - d( )/dr and where 

k(r) = 3%~cosr Ix + l~sinrlxdx, 

(23) 

£ c(r) = 37o Ix +tlsinrlx2dx 

and 

with 

{P(r), Q(r)} = 3% fo 1 x lx + usinr I {p ix, r), q(x,r)}  dx 

tp(x,r),  q (x , r )  } = 3 y{p(x,y,r) ,  q(x,y,r)} dy 

= { < ?,(x,r) ¢(r) >, < X(x,r) ~(r) > }. 

(24) 

(25) 
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The constant 602 is equal to 1 since the blade is hinged at the blade root (but would be greater 

than unity for a blade with an elastic root restraint). Note that the expressions in (21) satisfy 

the boundary conditions (16). 
The quantities ~ (x,r) and ~ (x,r) are determined by 

F~ = - o ~  + q ,  q T = - [a + c ( r ) l  ~ - [~o 2 + k (r ) ]  ~ + - ~ ( x , r ) ,  (26) 

f i (x ,0 )=~(x ,0)=  0 (27) 

where 

fo ~(x,r) = 370 y[y  +lasinrIRs(x,y)dy. (28)  

Equations (26) are obtained from (17) and (18) by multiplying through by 3y and integrating 

over the interval (0,1). Note that with w(y,r) = y¢(r), p(x,y,r) satisfies the boundary conditions 

(20). 
The general procedure is to solve the initial-value problem (26) and (27) with x as a para- 

meter. The results are to be used in the integrals on the right side of equations (24) and the 
integrals evaluated to give P(r) and Q(r). Having P and Q, we can then solve the four equations 

(22) subject to the initial conditions 

u(o )  = s (o )  = 7"(0) = v(o)  = o (29) 

which follow from (15). We note, however, that the second and third equation of (22) together 
with S(0) = T(0) = 0 imply S(r) = T(r) for all r (consistent with the fact S = < ¢~ > = T). 

Therefore, the system (22) is effectively a system of three equations 

0 =2S, S = V - [ 6 0 2 + k ( r ) l U - c ( r ) S + P ,  

= -2160 2 + k(r)] S - 2c(r) V + 2Q. 
(30) 

The damping coefficients c(r) and the supplementary spring rate k(r) due to the aero- 
dynamic lift have been calculated in [9]. In the case where X is independent of x, we have 
Rs(x,y ) = 02 (a positive constant); the corresponding T(x,r) = T(r) reduces to the envelope 
function for the inflow ratio term given in [91. 

4. Exponential correlation in space-hovering 

In the remaining sections of this paper, we restrict ourselves to the class of  random excitations 
with 

Rs(x,y ) = o2 e-e I x - y l  (31) 
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where 02 > 0 and e/> 0 are known constants with 1/e being the load correlation length. We will 

be interested in how the rigid-blade solutions obtained in [4], [5] and [7] for a spatially uniform 

random excitation are modified by  a finite load-correlation length. In this section, we consider 

first the simpler case of  hovering. 
With ~ = 0, equations (26) become 

7 
,~- = - , w  + q ,  q T : - ( a  + ~)  q- - ~ , ~  + ~" 

where 

fO 
?- =370 o~ y 2 e - e t x - Y t d y  

3,o 2 6 2 
[2x 2 + e2x 4 _ x 2 e - , X  _ x2e , (X -  a) (1 + e + "2--)]. 5 3 Z 

(32) 

(33) 

Since Y is independent of  T, the steady-state solution of  (32), denoted by Ps and qs, is also 

independent of  r and can be obtained simply by setting Pr = q r  = 0. The resulting algebraic 

equations give 

Ps =7(x) /A,  qs = °P-s, A = ~ 2  + a 2 + a7/8.  (34) 

Correspondingly, we have from (24) 

~o I , ,/2 o2 
e s = 370 X2Ps(X)dx - 36A p(e), Qs = °Ps' 

72 J e a e 4 e s 
p(e) = ~ [e-E(1 + e + - ~ ) -  (1 - ~- + -~ - 2~)] 

(35) 

which are also independent of  r. It follows that the steady-state solution of  (30), denoted by 

U, S and V, is also independent of  r. By setting U r = V r = S r = 0, we have immediately from 

(30): 

= 8a 2a702 
- ~  Ps - 9A p(e) -= Voo(e), 

/] _ 702 (8a + 7) p(e) =- Uo p(e), S = 0, 
36Aw 2 

(36) 

where Vo and Uo are independent of  e and are in fact the meansquare velocity and displacement 
known for the case of  a spanwise uniform random inflow with the same exponential time- 
correlation [4, 5, 7]. The factor p(e) in (32) and (33 )may  therefore be thought of  as an ampli- 

tude factor associated with a finite spanwise correlation length of  the inflow. It is not difficult 
to verify that p(e) --* 1 and p '(e)  -* 0 as e -+ 0 so that F'/Vo and U/Uo decrease with increasing 
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e for small e. A small but positive e means a finite correlation length which is large compared 

with the blade length. On the other hand, p(e) ~ 0 and 5ep(e) -~ 9/5 as e -+ 0% so that the 

solution tends to that of a spatially delta-correlated inflow. The variation of  the amplitude 

factor p(e) over the whole range of  e is given in Figure 2 where we have plotted ep(e)/2 for all 

e > 2 in order to compare with the limiting case of  spanwise delta-correlated inflow. The plot 

shows that p is a monotone decreasing function as e increases. Therefore, the meansquare 

flapping displacement and velocity decrease with decreasing spanwise correlation length of the 

particular class of  inflows. 

For blades in hover, the problem with a random inflow excitation is a rather artificial one; 

instead, an excitation due to a randomly changing collective pitch angle O(x,r) is of  interest. 

For this case, we have f(x,r) = 3'0 ix + /~sinr[ ~ O(x,r). If  O(x,r) is exponentially correlated 

both in space and time (as given by (4) and (31)), similar calculations for/a = 0 give 

I7 2ol7o 2 7o2(8a + 3') Po(e), S-o = 0, (37) 
- 16A 0o(e), 0 o -  64Aw 2 

C 4 l l s 2  [ (1  - + 
p0(c) = 7 

6 5 e 6 G 7 C 2 C 3 
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and where A is as given in (33). The variation of  Po with e is also shown in Figure 2. With 

po(e) ~ 1 as e ~ 0, the results in (37) tend to those for a spanwise uniform 0 obtained in [7]. 

As e -~ o o ,  po(e) tends to zero while ½epo(e) tends to 16/7 corresponding to the case 

R s ( x , y )  = o25(x -y ) .  For finite values o f  e, Po(e) is again a monotone decreasing function as 

e increases. Therefore, the meansquare flapping displacement and velocity are also reduced by 
a shortening of  the spanwise correlation length of  this particular class of  O(X,T). 

Before leaving the hovering case, it should be noted that the quantities Vo and Uo (for both 

kinds of  random excitations considered) are monotone increasing functions of  7 for all 3  ̀~> 0 
and for all positive values of  6o 2 and a. In the realistic range of  3  ̀and 6o 2 , Vo increases almost 

linearly with 3, while U0 increases quadratically with 3  ̀ for a = O(1) and is only (nearly) linear 

in 3  ̀for broad band excitations (a > >  1). 

5. Forward flight at low advance ratios 

While an exact elementary solution of  our problem was obtained in Section 4 for the hover case 

6u = 0), the same is not possible for the forward-flight case 6u > 0). To gain some insight into 

the effect of  a spanwise correlation of the inflow, we restrict ourselves in this section to the 
low advance-ratio range, i.e.,/~s << 1. As expected, the contribution of  the reverse-flow effect 

can be neglected (see [4, 8]) in this range so that 

~o ~ 3' 7 c ( r ) - 3 7 o  (x s + x  2 I~sinr)dx = ~ + -6 lasinr-Cn(r) ,  

k(r)---- 33'0/lcoSrfo I (x2 + x/asinr) dx 

3' 
= /acosr + ~-/a sin2r = k n(r), 

F(x,r)  -~ 33'ooZfo I @2 +y/~sinr) e -~  t x - y  Idy 

= o 2 3'[ro (x) + rl (x)/asinr] -~ rn(x,r ), 

(39) 

where the subscript n indicates a normal flow situation and where 

r o ( x )  = e -S[2  + e 2 x  2 - e - e x  - e - e ( l  - x ) ( 1  + e + ½d)], 

r 1 (x) = le -2  [2ex + e -ex - e -eO -x)(1  + e)]. 
(40) 

The form o f  ¢n ('r), kn(r)  and r n ( x , r )  suggests that a steady-state solution of  (17) and (I 8) in 
powers 0f/a is possible when/ l  < 1 .* Upon writing 

* A perturbation solution of the initial-value problem (15)-(17) itself can be obtained without difficulty. 
But we are not interested here in the transient part of the meansquare response properties. By retaining terms 
of higher powers of ~ in (39), (41) and (45), the same solution technique also gives results for moderate ad- 
vance ratios, i.e. ~ < 1. 
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{ff,~}= ~ {Pm(X,r)Ctm(X,7)}/a m, (41) 
m = O  

the coefficients Pm and qm (which are independent of/a) are evidently the particular solutions 
of the following sequence of ODE: 

Po'+2eoPo+Apo=Tro(x), q o = P o + e P o ;  (42a) 

{ p] '+ 2coP; + Apl = ~r l (x ) s in r -  6 sinrpo - ~ (~sinr + cost)P0, 

ql =P~ +aP l ;  

etc. 

(42b) 

where dots indicate differentiation with respect to r ,  A is as defined in (34) and Co = a + 3,/16. 
It is a straightforward matter to obtain these particular solutions since the ODE involved are 
with constant coefficients. 

The steady-state perturb ation solutions (41) are then inserted into (24) with the reverse-flow 
effect neglected. Upon carrying out the integration, we get 

o2 ,,/2 
P('r) = 3 " ~  p(e){ 1 +/a[Pso + Ps l/3(e)]sinr 

+/a[/'c o + G1 ~(e)lcosr + O ~  2)}, 

o 2 7 2 
Q(r)= ~ p(e){a +/a[Q~o + Q41/3(e)lsim 

(43) 

+ P[Pco + Pc 1/~(e)]COST + O(g 2)} 

where p(e) is as given in (32) and 

6El 1 p(e)~(e) = ~ 1 - e + - e-e (44) 

The constants Psi, Pci, Qsi and Qci depend only on 7, ~ and co 2 and will not be listed here. 
Therefore, the effect of the spanwise correlation is completely described by the quantities p(e) 
and ~(e). Note that we have el(e) ~ 1 as e + 0. 

Having the steady-state solution for P(r) and Q(r), we can now use (30) to determine the 
steady-state meansquare properties of the blade response. In view of (43), a steady-state solu- 
tion of (30) may be taken in the form 

{ U,S, V} = { U,S, V} + u[ { Us,Ss, Vs }sinr + { Uc,S e, Vc }cOsr ] + 0(122). (45) 

The O(1) terms, U, S and V, are just the steady-state solutions for the hover case given by (35). 
By the method of undetermined coefficients, the constants Us, S s . . . . .  V c are solutions of a 
system of six coupled linear algebraic equations which may be written as two sets of three com- 
plex equations 

Journal of Engineering Math., Vol. 14 (1980) 241-261 



252 F.Y.M. Wan 

1 7 i )  f f=~'+ ~ i f f ,  __ ~ +  (6o2 2 16 

(46) 

(~-  2iS'= 0, (47) 

for the three complex unknown constants if,, ffand ffwith 

{U,S, . . . .  Q} = {Us . . . . .  Qs} - i{Uc . . . . .  Q e } ,  (48) 

0272 
{Ps'P°Qs'Qc} = 36A P(e)[{Pso . . . . .  Qco} + {Psi . . . . .  Qcl}/3(e)]. (49) 

It follows from (33) and (45) that the solution of (43) and (44) can be put in the form 

Us = o2 p(e)[Uso + Usl/3(e)], etc., (50 

where Uso, Us1 . . . . .  Vct depend only on 7, a and 6o 2 . 
In the case e = 0, the solutions for the functions U(r), S(r) and V(r) as given by (45) are 

exactly the approximate steady-state variances and covariance of the flapping response obtained 
in [8] for low advance-ratio flight and will be considered known. Our concern here is with the ef- 
fect of a finite spanwise correlation length (e > 0) on these response statistics. This effect is com- 
pletely described by the two quantitiesp(e) and t3(e). From the plot of/3(e) in Figure 2, we see that 
this monotone decreasing function changes by less than 10% of its value at e = 0 as the correlation 
length shortens (from infinity) to a fraction of the blade length. Therefore, the main effect of a 
spanwise load correlation is in the amplitude factor O(e). As both p and t3 decrease with increasing 
e, a correlation-length shortening in the low advance-ratio range gives rise to a reduction in the 
time average of the meansquare flapping properties as well as in the fluctuation about these 
average values. 

Solutions for O(p2)-terms in (41) and (45) have also been obtained. In the e = 0 case, these 
terms involve the second harmonics cos 2r and sin 2r. The effect of a Finite spatial correlation 
length on these O ~  2 )-terms is qualitatively similar to that on the O(1) and O(/.0-terms. As such 
the explicit solutions for the O ~  2)-terms will not be listed here. 

6. Numerical solution for arbitrary advance ratio 

If/13 is not small compared to unity, the situation is much more complicated since the effect 
of reverse flow is no longer negligible. For/2 ~< 1, we have upon carrying out the integration in 

c ( r )  = 

(23), 

c . ( r ) ,  

Cn(r) + 3'Ia4 (3 - 4cos2r + cos4r), gg- 

(2mrr ~< r < (2m + 1)rr) 

((2m + l)Tr ~<r ~<(2m + 2)1r) 
(51) 
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and 

kn(r), (2mzr ~< r ~< (2m + 1)rr) 

k(r) = (52) 
kn(r) - 7/1' (2sin2r - sin4r), ((2m + l)Tr ~< r <~ (2m + 2 ~ )  

where m is any integer and the subscript n indicates a normal flow. Evidently, the effect of  

reverse flow is negligible in c and k if g3 << 1 (in fact, as long as/14 << t).  From (28), we get 

rn(x,r), (2mzr<~r ~<(2rn + 1)rr, 0~<x~< 1) 

r~x,r) = -rn(x,r) - r1(x,r), ((2m + l)Tr ~< r ~< (2m + 2)rr, x ~< -/~sirlr) 

rn(x,r ) + rg(x,r),  ((2rn + 1)Tr ~< r ~< (2m + 2)7r, x > -~ s in r )  
where 

rl(x,r) = 7e-3 (e -e( l  -x ) [ (2  + 2e + e ~) + e(1 + e)lasdnr] 

(53) 

-e  e(x+l~sinr )(2 -- e/asinr)}, (54) 

rg(x,r ) = 7e-3 {e-~X (2 - etasinr ) - e-~(x +. ~inr )(2 + el~sinr )}. 

With (53) and (54), it is not difficult to show that the effect of  reverse flow can be neglected in 
r-(.x,r) if/a 3 << 1 at least for e << 1 and e >> 1. 

For/1 > 1, the entire blade is subject to reverse flow in the range - s i n r  > g-a so that 

c(r)=-Cn(r), k(r)=-kn(r) ,  r--(x,r)=-rn(x,r) (5S) 

3~r 37r 
for all r in the range -~- - v ~< r ~< -~- + u where v = cos -1 (1/ta). We can now solve the initial 

value problem, (26) and (27), numerically by  a 4th-order Runge-Kutta scheme for a set of  x 

values, say x0 = 0, x 1, x2 . . . . .  Xm = 1. With j~(xk) = f(xk ,rj), the set o f  solutions ~](xk),-qj(xk)} 
for a fixed j is used in (24) to get P(ri)  and Q(rj) with the integrals evaluated by Simpson's rule. 

Once P(ri) and Q(rj) are calculated, the initial-value problem (29) and (30) is solved numerical- 

ly again by a 4th-order Runge-Kutta schema. Within the stability boundaries of  the two sets of  

equations, (26) and (30), we get accurate steady-state periodic solutions of  the meansquare blade 

flapping properties after four blade revolutions for the realistic range o f  values of  7(2 ~< 7 ~< 12). 

For a fixed set of  7,/a,  e, a and ~o 2 , the entire solution process for P, Q, U, S and V consumes 

about 50 seconds on a UNIVAC 1106 if 21 stations along the blade span are used in the numer- 
ical evaluation of  the integrals on the right side of  (24). 

With Rs(x2,xl ) = cr 2 (a constant), the class of  random functions characterized by (4) seems 
to adequately describe the random inflow associated with atmospheric turbulence at altitude 

higher than 300 ft. above terrain if the effect of  the spatial variation o f  the vertical turbulence 

component ,  o f  the longitudinal turbulence component  itself and of  the blade motion are all 
neglected (see [4] and references therein). In that case, we have ~ = 2tll/L where l is the blade 
length and L/2 is the scale length of  the vertical turbulence component.  L is about 400 ft. for 

an altitude of  300-700 ft. above terrain and is several thousand feet for higher altitudes. From 
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the expression for a, we see that, at the low advance-ratio range, the correlation time is long 
compared to one blade revolution for existing blades which range from 33 ft. to 100 ft. As such, 
the results of Section 5 for the low advance-ratio range serve only to indicate the qualitative 

effect of  a spatially correlated inflow; we are mainly interested in the case of  high advance-ratio 
flight. 

The meansquare flapping responses of  the blade to a zero mean ~(x,r) with a correlation 

function given by (4) have been studied with the help of  the numerical solution scheme out- 
lined in this section for a wide range of the blade and load parameters. The numerical solution 
shows that the perturbation solution of Section 5 (including O(g 2)-terms) gives a very good 

approximation of the exact solution for/a ~< 0.4. It also shows that the effect of a t'mite e for all 

0 ~</~ ~< 1.6 is qualitatively similar to that indicated by the perturbation solution. The actual 
distributions of  the steade state < ~ > and < ~2 > are given in Figures 3, 4, 5 and 6 for/~ = 1.6 
and for the two extreme rotor-disc sizes, l = 33~ ft. and l = 100 ft, operating at 300 ft. - 700 ft. 
above terrain (L = 400 ft.). We have taken co s = 1 in these examples since most existing blades 

are hinged at the blade root. We see that, aside from an increase in the magnitude of the mean- 
square response, an increase in/~ tends to shift in the time when < ~2 > and < ~2 > attain their 

maximum values further toward the midway point and the end of the backstroke, respectively. 

Finally, we show in Tables 1 and 2 the effect of the Lock number ~( on the peak values of  
< ¢: > and < ~2 >. We see in particular that the amplitude growth with 7 is nonlinear and the 
growth rate depends significantly on/a but not at all on e. 

8 

- -  4 m,l 

V 

O 
2 n ~  

Figure 3. 

i ' I I " l  I I r t [ 

(,', +'1> =,,p [-= I - 't-EI x- 'l ] 

7"--4. 
~. = 1.0 

(a: 0'167' 8=0)~~/ (a =O.5,E=O) 

/ / /  
= . , E = I . O )  

I I I I I I - I I , I 

(2n+l) -.- (2 n+2)~- 

Meansquare flapping angle (/~ = 1.0). 
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TABLE 1. TABLE 2. 

Variation o f  M a x i m u m  < O2 ( r) > /a2 with L o c k  N u m  - Eariation o f  M a x i m u m  < 62 (r ) > /o2 with Lock  N u m  - 

ber for  < h (x , r )h (x ' , r ' )  > = a 2 e x p ( - a  I r - r '  I - ber f o r  < h (x , r )h (x ' , r ' )  > = a 2 e x p ( - ~  I • - *' I - 

e I x -  x '  I). • r x - x '  I). 

~ = 1 . 0  

a = 0 . 5  

u = l . 0  

= 0.167 

~ = 1 . 6  

a = 0 . 8  

# = 1 . 6  

~ = 0 . 2 6 7  

2¢=2 ? = 4  ? = 8  ? = 1 2  

e=  1.0 1.26 3.76 13.74 30.06 

e = 0 .  1.58 4.71 17.26 37.75 

• = 1.0 1.97 5.22 17.20 36.70 

• = 0. 2.44 6.53 21.61 46.07 

' e = l . 0  2.30 9.58 61.29 183.30 

i • = 0 .  2.91 12.09 77.55 231.32 

e = 1.0 3.17 13.40 85.92 251.25 

e = 0 .  3.98 16.88 1109.07 316.29 

U = I . 0  

~ = 0 . 5  

# = 1 . 0  

3 ,=2  ? = 4  ? = 8  ~ = 1 2  

e = 1.0 1.03 2.91 10.54 23.05 

e = 0 .  1.29 3.62 13.18 29.11 

e=  1.0 1.54 3.83 12.56 27.01 

c~= 0.167 e = 0. 1.89 4.72 15.59 33.99 

# =  1.6 e=  1.0 1.62 9.20 75.01 246.14 

= 0.8 e = 0. 2.05 11.72 95.34 312.56 

# = 1.6 e = 1.0 2.08 12.77 103.90 331.84 

c~= 0.267 e=  0. 2.60 16.05 137.23 423.09 
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7. Autocorrelation functions 

Having determined (the rigid flapping mode approximation for) U, S and V, we can now cal- 
culate the autocorrelation of the flapping angle 4~(t) which characterizes the second-order 
statistics of the flapping response. We begin by multiplying (1) by w(x',r') and ensemble-averaging 
the result to get 

Rrr  + 70[ x + gsinr [ R r + Lxr [R] = ~'ol x ÷ psinr I A (x,r ;x',r') (56) 
where 

R(x,r  ;x',r') = < w(x,r )w(x',r') >, 
(57) 

A (x,r;x' ,r ')  = < X (x,r)w(x',r ')  >. 

To get the yet unknown load-response correlation A, we multiply (5)through by w(x' ,r ' )and 
ensemble average giving us 

A r +aA=V~--d<n(x , r )w(x ' , r ' )>=O,  (r > r ' )  (58) 

where the right-hand side vanishes for r > r '  by (6). At r = r', we have from the relevant deft- 
nitions 

A (x,r ';x' ,r ')  = p(x,x',r ') =- < X(x,r')w(x',r') >. (59) 

It follows from (11), (25), (58), (59) and the assumption of rigid flapping that 

Ar +aA =01(r >r ' ) ,  A(x,r';r ')=-p(x,r')  (60) 
where 

- £, 
A(x,r;r ' )  = 3 x 'A(x ,r  ' ,r )dx ' (61) 

She solution of (60) is 

X(x,r:~r') =-fi(x,r')e -a(r-r ' ) ,  (r >Jr'). (62) 

Upon introducing the rigid flapping assumption into (56), we get 

Rrr  + c(r)Rr + [ co2 + k(T)]/T = ~'(r,r ') (r > r ' )  (63) 

where/~(r ;r') = < ~)(r~(r') > and 

2 (r ;7") = 33'0 x I x + ~sinr I -A(x,r ;r ')dx 

3"go e -a ( r - r ' )  fO 1 -- , = X I x + p~lnr I p(x,r )dx 

_ _  1 - ~ - o t ( ' r  - - , r ' )  ~ "  , 
=7r~ P(r ;r ) (64) 

Journal of Engineering Math., Vol, 14 (1980) 241-261 



258 F. Y.M. Wan 

, ~ a  ! t 

with P(~- ;r ) = P(r ' )  according to (24). Note that 

k ' ( r ' ; r ' )  < ¢ 2 ( r ' ) > =  U ( r ' ) ,  ~ ' ' ' = R~ (r ;r )=  s(~ ), (65) 

Rr r' (r ;r ) = V(r'). (66) 

The two conditions in (65) serve as initial conditions for (63). But even without solving the 
, ~ a  t initial-value problem (63) and (65) explicitly for R(r;r  ), the following informative observation 

can be made. Since the effect of a spatial load correlation appears only in ff(r ;r ' )  which is a 

periodic function of r and r '  at steady state, the correlation time of the response depends only 

on the parameters a and 7 and not on e. Within the framework of rigid flapping, our particular 
type of spanwise load correlation only modifies the amplitude of  the autocorrelation of the re- 
sponse. 

8. Multi-mode solutions 

The key step in the spatial correlation method [3] used in this paper for the second-order response 
statistics of stochastic rotor blade response is the determination of the four spatial correlation 
functions u(x,y,r), s(x,y,r), t (x,y,r)  and v(x,y,r) defined in (7). For a class of random excita- 
tions including the type considered in this paper, this is done by the procedure outlined in Sec- 
tion 2. In later sections, we used this procedure and obtained an approximate solution for these 
spatial correlation functions by limiting ourselves to a rigid flapping mode of blade deformation. 
This approximate solution shows that the second-order statistics of the rigid flapping mode 

response may vary considerably with the finite correlation length of the spatially nonuniform 

random excitation. 
More accurate second-order blade response statistics can be obtained by allowing for the 

contribution of  other rotating beam modes. Let Wk(x), k = 0, 1, 2 . . . . .  be the orthonormal 

eigenfunctions of  the operator L x [ ] = ~4 [ ]xxxx - ½(1 - x 2 )[ ]xx + x[ ]x with the hinged-free 
end conditions (3) and {Ggk } be the corresponding eigenvalues (with Wo (x) = V ~ x  and 2 2 (.00=(.,9 -_. 
1). Analytical and numerical solutions for this eigenvalue problem can be found in [6], [10]* 
and elsewhere. With 

~p(x,y,r ), q(x,y,z ), u(x,y,r ), . . . ,  v(x,y,r )} 

K K 
= Z Z . ,  n 0 ~pmn(r) 'qmn(r) '  Utah(Z), . .  Vmn(r)}Wm(X)WnO0 (67) 

m=0 = 

for some fixed K, we get from (17)-(19) K uncoupled initial value problems for {Prnn(r)} and 

{qrnn(r)} each involving 2K ODE, 

Pmn + °tPmn = qmn, (68) 

* The solutions obtained in [101 and related articles are for a clamped-free rotating beam. However, the 
method employed there can also be used for a hinged-free beam. 
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K 

• 2 ~=0 (rlnjPm] + ~njqm]) + Rmn(r); qmn + OZqmn =60nPmn --]= 

p, , , .  (o)  = q , . .  (o)  = o ,  

(69) 

(70 

(m, n = 0, 1,2 . . . . .  K) where 

~nj(r) = 70 l Y + gsinr I Wn(P)Wj(y)dY = ~/n(T), 

2' r~nj(r) = 7o~cosr l Y + mint  I W.O,)W/O,)dy 

(71) 

(¢  Tin). (72) 

Rmn(r) "/O fo' fo l = l y  +ps in r  I Rs(x,y)Wm(X)Wn(V)dydx = Rnm( O. (73) 

Note that the expressions for p and q in (67) automatically satisfy the boundary conditions 
(20). We also get from (8), (10), (12), (13) and (15) the following initial value problem for 
4K 2 coupled ODE for the determination of { U m n }, {Tm n }, {Sin n } and { V m n }: 

~Jrnn = Zmn + Stun, 

K 
~n Vmn = +("°mUmn - kX==O (rlmkUkn + ~mkTkn) +Pmn(r), 

K 

g . .  = Vm. +"~Um. - 
k=0 

(~nk Umk + ~nkSmk) + Pnm(T), 

K 
~rmn =C,OmSmn + COnTm n 2  2 _ k~=O (,lqlmkSkn + ~nk Tmk + ~mk Vkn + ~nk Vmk.) 

(74) 

(75) 

(76) 

+ Qmn(r); (77) 

Um,,(O) = S m . ( O )  = r m . ( O )  = V m . ( O )  = O, (78) 

(rn, n = 0, 1, . . . ,  K) where 

K fo 1 Pmn('r) = 70 "~=0 Pin(r) Ix +/~sinz [ W](X)Wm(X)dX ] (¢e.m(r)), (79) 

;o' Qmn(r) = 7o/X=o qjn(r) Ix + psinr I Wj(x)Wrn(x)dx 

+qlm('r) fo I Ix +psinl" I Wl(X)Wn(x)dx}=Qnm(r). (80)  

Note that the expressions for the spatial correlations functions in (67) automatically satisfy the 
boundary conditions (16). 

It remains to use eigenfunction expansions to determine the autocorrelation function of the 
blade displacement. With (67) the solution of  (58) and (59) takes the form 

Journal of Engineering Math., Vol. 14 (1980) 241-261 



260 F Y.M. Wan 

t t t 
A (x , r ;x  ,r ) = p(x ,x  , r ' )e  -~(~ -~')  

K K 
=e -~(r -~ ' )  Z ~_, pmn(r ' )Wm(X)Wn(x '  ) (81) 

m=0 n=0 

,u ,  r !I- r .  ,~orresvonu,,~,,y, we set 

K K 
R ( x , r ; x ' , r ' ) =  ~ Z rmn(r , r ' )Wm(X)Wn(x '  ) ( r > r ' )  (82) 

m = 0  n = O  

and we get from (56) and the initial conditions R ( x , r  ';2c ' ,r ' ) = U(x,x ',r ' ) and R r (x ,r';ix ' ,r ')  = 
T(x ,x ' , r ' )  the following initial value problem for rii(r,r '), i, / = O, 1,2 . . . .  , K: 

K 
2 

rij, r r -- Xirij + ~ (r?imrrn i + ~imrml, r )  
m = O  

K 
= e - a ( r - r ' )  ~imPmj ('~ > "g '), (83)  

m = 0  

t t' t ¢ I f 
rii(r ,r )=  Uo.(r ), rii,~(r ,r )= Tii(r 1. (84) 

Evidently an approximate solution for the second-order response statistics with a specified 
degree of  accuracy can be obtained by taking K sufficiently large in the above normal mode- 
Galerkin procedure. The rigid flapping solution corresponds to the K = 0 case and was found 

to be a reasonably accurate approximation of the exact solution for a spatially uniform random 
excitation [7, 8]. Whether it is a good approximate solution for blades with a (zero mean) spatially 
nonuniform random excitation depends on the load correlation length to blade length ratio. 
Note that the amount of machine computation increases geometrically with K and that a direct 
numerical solution of the initial boundary value problems of Section 2 (as done in [2] for 

blades with no bending stiffness) may be more economical for large values of K. If an accurate 

solution can be obtained with a small number of eigenfunctions, the present normal mode ap- 
proach has the advantage of singling out the dominant rotating beam modes in the blade re- 

sponse. In the case of K = 0, it also has enabled us to understand the qualitative dependence of 
the blade response on the load correlation length, at least in the case of a small advance ratio. 
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